大数据领域的十大开源技术

CSDN 发表于:14年03月21日 10:17 [综述] DOIT.com.cn

  • 分享:
[导读]根据最新的思科全球云指数报告,预计到2017年年底,全球数据中心年均IP流量将达到7.7ZB。总体而言,数据中心IP流量在2012年到2017年之间将以25%的复合年均增长率(CAGR)增长。

根据最新的思科全球云指数报告,预计到2017年年底,全球数据中心年均IP流量将达到7.7ZB。总体而言,数据中心IP流量在2012年到2017年之间将以25%的复合年均增长率(CAGR)增长。

现在增长的速度更快,而且组织需要依靠大量的数据集帮助它们运营、量化和发展业务。在过去几年里,大型数据库经历了从GB到TB再到PB级的发展过程。

此外,数据也不再是存储在一个地方,随着这些数据的增长以及云计算的发展,这些数据实现了分布式存储。

几乎所有行业都在发展大数据和数据科学

科学:大型强子对撞机每秒大约进行6亿次碰撞。因此,只有当传感器流数据小于0.001%的时候才有效,从四个大型强子对撞机实验中产生的数据意味着每年将产生25PB的数据(统计于2012年),此外备份还会产生大量数据,备份后的数据有可能达到200PB。

研究:美国航空航天局的气候模拟中心(NCCS)在其超级计算机平台上存储了约32PB的气候观测和模拟数据。

私有/公共:亚马逊每天处理的后端操作达数百万,此外还有超过50万个第3方卖家的查询操作。亚马逊的核心技术运行在基于Linux的数据库系统上,截至2005年,亚马逊拥有世界上三个最大的Linux数据库,容量分别达到了7.8TB、18.5TB、24.7TB。

组织被迫寻找新的创造性方法来管理和控制如此庞大的数据,目的不只是为了整理数据,而是要分析和挖掘数据来进一步发展业务,因此,一些开源大数据技术值得考虑:

Apache HBase:这个大数据管理平台建立在谷歌强大的BigTable管理引擎基础上。作为具有开源、Java编码、分布式多个优势的数据库,Hbase最初被设计应用于Hadoop平台,而这一强大的数据管理工具,也被Facebook采用,用于管理消息平台的庞大数据。

Apache Storm:用于处理高速、大型数据流的分布式实时计算系统。Storm为Apache Hadoop添加了可靠的实时数据处理功能,同时还增加了低延迟的仪表板、安全警报,改进了原有的操作方式,帮助企业更有效率地捕获商业机会、发展新业务。

Apache Spark:该技术采用内存计算,从多迭代批量处理出发,允许将数据载入内存做反复查询,此外还融合数据仓库、流处理和图计算等多种计算范式,Spark用Scala语言实现,构建在HDFS上,能与Hadoop很好的结合,而且运行速度比MapReduce快100倍。

Apache Hadoop:该技术迅速成为了大数据管理标准之一。当它被用来管理大型数据集时,对于复杂的分布式应用,Hadoop体现出了非常好的性能,平台的灵活性使它可以运行在商用硬件系统,它还可以轻松地集成结构化、半结构化和甚至非结构化数据集。

Apache Drill:你有多大的数据集?其实无论你有多大的数据集,Drill都能轻松应对。通过支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平台,允许大规模数据吞吐,而且能很快得出结果。

Apache Sqoop:也许你的数据现在还被锁定于旧系统中,Sqoop可以帮你解决这个问题。这一平台采用并发连接,可以将数据从关系数据库系统方便地转移到Hadoop中,可以自定义数据类型以及元数据传播的映射。事实上,你还可以将数据(如新的数据)导入到HDFS、Hive和Hbase中。

Apache Giraph:这是功能强大的图形处理平台,具有很好可扩展性和可用性。该技术已经被Facebook采用,Giraph可以运行在Hadoop环境中,可以将它直接部署到现有的Hadoop系统中。通过这种方式,你可以得到强大的分布式作图能力,同时还能利用上现有的大数据处理引擎。

Cloudera Impala:Impala模型也可以部署在你现有的Hadoop群集上,监视所有的查询。该技术和MapReduce一样,具有强大的批处理能力,而且Impala对于实时的SQL查询也有很好的效果,通过高效的SQL查询,你可以很快的了解到大数据平台上的数据。

Gephi:它可以用来对信息进行关联和量化处理,通过为数据创建功能强大的可视化效果,你可以从数据中得到不一样的洞察力。Gephi已经支持多个图表类型,而且可以在具有上百万个节点的大型网络上运行。Gephi具有活跃的用户社区,Gephi还提供了大量的插件,可以和现有系统完美的集成到一起,它还可以对复杂的IT连接、分布式系统中各个节点、数据流等信息进行可视化分析。

MongoDB:这个坚实的平台一直被很多组织推崇,它在大数据管理上有极好的性能。MongoDB最初是由DoubleClick公司的员工创建,现在该技术已经被广泛的应用于大数据管理。MongoDB是一个应用开源技术开发的NoSQL数据库,可以用于在JSON这样的平台上存储和处理数据。目前,纽约时报、Craigslist以及众多企业都采用了MongoDB,帮助他们管理大型数据集。(Couchbase服务器也作为一个参考)。

在我们这个DOD(data-on-demand)社会,每天都有大量的数据产生,并且大量的数据被收集在主要IT系统中。无论是社交媒体的照片还是国际商店交易信息,大量高质量、可量化的数据每天都在爆炸性增加,应对的唯一方法就是快速部署一个高效的管理方案。

切记,除了要对数据进行快速的分类和组织,IT管理人员必须具有挖掘信息并将其应用到业务中的能力。商业智能和数据量化背后的科学将继续发展和扩大,企业取得竞争优势的关键在于能否对它们的数据进行很好的管理。

[责任编辑:王雪杨]
阿里巴巴集团昨天宣布,已经启动公司的上市事宜。“上市地点之谜”悬空多月之后,阿里巴巴最终将首次公开募股(IPO)地点确定为美国。其在官方文件中同时表示,“未来条件允许,我们将积极参与回归国内资本市场,与国内投资者共同分享公司的成长。”
官方微信
weixin
精彩专题更多
存储风云榜”是由DOIT传媒主办的年度大型活动。回顾2014年,存储作为IT系统架构中最基础的元素,已经成为了推动信息产业发展的核心动力,存储产业的发展迈向成熟,数据经济的概念顺势而为的提出。
华为OceanStor V3系列存储系统是面向企业级应用的新一代统一存储产品。在功能、性能、效率、可靠性和易用性上都达到业界领先水平,很好的满足了大型数据库OLTP/OLAP、文件共享、云计算等各种应用下的数据存储需求。
联想携ThinkServer+System+七大行业解决方案惊艳第十六届高交会
 

公司简介 | 媒体优势 | 广告服务 | 客户寄语 | DOIT历程 | 诚聘英才 | 联系我们 | 会员注册 | 订阅中心

Copyright © 2013 DOIT Media, All rights Reserved. 北京楚科信息技术有限公司 版权所有.