Google推云分析系统Cloud Dataflow,称已弃用MapReduce多年

周建丁 发表于:14年06月26日 10:43 [翻译] DOIT.com.cn

  • 分享:
[导读]Google已经弃用其曾经的三大核心技术之一MapReduce,因为该系统已不能满足这家互联网巨头的数据分析需求。取而代之的是一个称为Cloud Dataflow的云分析系统。它允许开发人员使用统一的编程轻松地创建复杂的管道用于批处理和流媒体服务,并且可以迅速抓取任意大型数据集。

Google已经弃用其曾经的三大核心技术之一MapReduce,因为该系统已不能满足这家互联网巨头的数据分析需求。

于周三在旧金山举行的Google I/O大会上,Google宣布了这一消息。取而代之的,是一个新开发的称为Cloud Dataflow的云分析系统。

MapReduce一直是一个非常受欢迎的基础架构和编程模型,用于在服务器集群上做并行分布式计算。它也是Apache Hadoop大数据基础架构平台的一个基础,后者已经得到广泛的部署,并成为许多公司的商业产品的核心。

然而,该技术已无法处理Google当前希望分析的数据量。Google技术基础设施高级副总裁Urs Hölzle表示,当数据规模达到PB级别,MapReduce变得太麻烦。

“我们真的不再使用MapReduce了,”Hölzle在他的主题演讲中说,该公司“多年前”就停止使用该系统。

在旧金山举行的2014 Google I/O大会上,Google技术基础设施高级副总裁Urs Hölzle宣布了一项新的云分析系统Cloud Dataflow。

Cloud Dataflow还将作为一项服务提供给使用Google云计算平台的开发者,它没有MapReduce的规模限制。

“Cloud Dataflow是数十年数据分析经验的成果,”Hölzle说。“和任何其他的系统相比,它的运行速度更快,扩展性更好。”

他表示,Cloud Dataflow是一项自动优化、部署、管理和扩展的全面的管理服务。它允许开发人员使用统一的编程轻松地创建复杂的管道用于批处理和流媒体服务,并且可以迅速抓取任意大型数据集。

Google还表示,Cloud Dataflow可以通过动态图显示数据流,Google演示了在本届世界杯上巴西对阵克罗地亚时的Twitter社区讨论追踪,当裁判“误判点球”时,网友的反映变化一目了然。

Google认为,Cloud Dataflow所有的这些特性解决了MapReduce搞不定的工作:它很难迅速摄取数据,它需要很多不同的技术,批处理和流是无关的,还有,MapReduce集群的部署和操作始终是必需的。

[责任编辑:周建丁]
人力成本只是海尔遇到的难题之一,采用工业机器人降低成本也仍局限于传统制造的思维。通过信息技术与制造业的深度融合变革运作模式,才可能成为中国制造业整体突破的关键路径。
官方微信
weixin
精彩专题更多
存储风云榜”是由DOIT传媒主办的年度大型活动。回顾2014年,存储作为IT系统架构中最基础的元素,已经成为了推动信息产业发展的核心动力,存储产业的发展迈向成熟,数据经济的概念顺势而为的提出。
华为OceanStor V3系列存储系统是面向企业级应用的新一代统一存储产品。在功能、性能、效率、可靠性和易用性上都达到业界领先水平,很好的满足了大型数据库OLTP/OLAP、文件共享、云计算等各种应用下的数据存储需求。
联想携ThinkServer+System+七大行业解决方案惊艳第十六届高交会
 

公司简介 | 媒体优势 | 广告服务 | 客户寄语 | DOIT历程 | 诚聘英才 | 联系我们 | 会员注册 | 订阅中心

Copyright © 2013 DOIT Media, All rights Reserved. 北京楚科信息技术有限公司 版权所有.