云计算存储会拖累大数据分析

有鉴于云计算大数据分析对网络、存储以及服务器的严格要求,我们毫不奇怪有些客户会把麻烦的任务、花费较大的任务都外包给云计算。虽然云计算供应商们表示,他们欢迎这个新的业务机遇,支持云计算大数据分析可以迫使他们面对可管理的不同架构困难。

根据几位云计算供应商的说法,云计算的弹性特征使它成为大数据分析的理想选择,大数据分析是指通过快速实施大容量非结构化数据可识别模式和完善业务策略。与此同时,云计算分布的特性也将成为大数据分析的问题。

“如果你正在运行Hadoop集群和诸如此类的工具,他们给存储带来一个真正的高负载,而在大多数云计算中,存储的性能并不足够好,”CloudSigma的共同创始人和CTO说,CloudSigma是一家位于苏黎世的基础设施即服务(IaaS)供应商。“云计算的大问题就是使存储以某个水平运行从而确保这种计算,而这也就是为什么有些人不会对大数据处理使用云计算的最大原因。”

但是Jenkins和其他的云计算供应商们强调,这些挑战并不是不可克服的,很多供应商们已经有计划调整他们的云计算架构以改善他们所有云计算服务的容量、性能以及敏捷度,他们预计还可为云计算中的大数据分析提供更好的支持。

“这与越来越多的公司实施云计算时我们所采取的措施一样:我们如何继续为需求提供支持?”Evolve IP的云计算副总裁Joseph Corvaia说,Evolve IP是一家位于宾州Wayne的云计算供应商。“但是,我不知道我们现在在做的一切与我们之前所做的有什么样的不同。我们只是对观察所消费的东东极具洞察力,根据在一个特定测量时期中我们所得到的测量数据,保持被消费的速度和所需新增的容量的协调比例。”

根据SHI国际(这是一家位于新泽西州Somerset的大型经销商、管理服务供应商(MSP)和云计算供应商)首席技术专家和管理合伙人Henry Fastert的说法,制定一个支持云计算大数据分析的架构并不比满足一般云计算服务快速增长需求的挑战更艰巨。

“作为一个云计算供应商,特别是此时此刻在这个市场,我不知道是否将会有一些大的需求,”Fastert说。“近来,我遇到这样一个情况,有一家小额博彩公司向我咨询,我是否能够在一周的时间内增加两千台八路虚拟机。幸运的是,我们有能力实现这一点。我们需要定期增加容量,但有时候我们需要在很短的时间内增加容量。”

云计算存储会拖累大数据分析

云计算存储在大数据分析方面面临的挑战可分为两类:容量和性能。

从平台的角度来看,扩大容量是所有云计算供应商需要高度密切关注的事情。

“数据保留以每年两倍或三倍的速度增长着,这是因为客户方面的原因。当然,这也会影响我们,因为我们需要提供容量,”Corvaia说。