大数据应用:本地服务器存储胜过SAN

何谓大数据

首先,我们需要清楚大数据与其他类型数据的区别以及与之相关的技术(主要是分析应用程序)。大数据本身意味着非常多需要使用标准存储技术来处理的数据。大数据可能由TB级(或者甚至PB级)信息组成,既包括结构化数据(数据库、日志、SQL等)以及非结构化数据(社交媒体帖子、传感器、多媒体数据)。此外,大部分这些数据缺乏索引或者其他组织结构,可能由很多不同文件类型组成。

由于这些数据缺乏一致性,使标准处理和存储技术无计可施,而且运营开销以及庞大的数据量使我们难以使用传统的服务器和SAN方法来有效地进行处理。换句话说,大数据需要不同的处理方法:自己的平台,这也是Hadoop可以派上用场的地方。

Hadoop是一个开源分布式计算平台,它提供了一种建立平台的方法,这个平台由标准化硬件(服务器和内部服务器存储)组成,并形成集群能够并行处理大数据请求。在存储方面来看,这个开源项目的关键组成部分是Hadoop分布式文件系统(HDFS),该系统具有跨集群中多个成员存储非常大文件的能力。HDFS通过创建多个数据块副本,然后将其分布在整个集群内的计算机节点,这提供了方便可靠极其快速的计算能力。

从目前来看,为大数据建立足够大的存储平台最简单的方法就是购买一套服务器,并为每台服务器配备数TB级的驱动器,然后让Hadoop来完成余下的工作。对于一些规模较小的企业而言,可能只要这么简单。然而,一旦考虑处理性能、算法复杂性和数据挖掘,这种方法可能不一定能够保证成功。

你的存储架构

这一切都归结到所涉及的存储结构和网络性能。对于经常分析大数据的企业而言,可能需要一个单独的基础设施,因为随着集群中计算节点的数量的增长,带宽开销也会增长。通常情况下,使用HDFS的多模计算集群在处理大数据时将会产生大量流量。这是因为Hadoop在集群的成员服务器间传输数据(以及计算资源)。

在大多数情况下,基于服务器的本地存储并没有高效率的优点,这也是为什么很多企业转向使用高速光纤结构的SAN来最大限度地提高吞吐量。然而,SAN方法本身并不一定适合大数据部署。尤其是那些使用Hadoop的大数据部署,因为SAN承担集中硬盘上数据的责任,这反过来意味着每个计算服务器将需要访问相同的SAN来恢复正态分布的数据。

然而,当比较本地服务器存储和基于SAN的存储时,本地存储在两个方面占据优势:成本和整体性能。简而言之,没有在每个计算成员放置RAID的原始磁盘在处理HDFS请求时将胜过SAN,然而,基于服务器的磁盘存在缺点,主要是在可扩展性方面。