交换式路由器与路由式交换机

一、传统的交换机和路由器

普通交换机工作在开放系统互连(OSI)七层模型的第二层,即数据链路层 ,交换以介质访问控制(MAC)地址为基础,能够识别数据流中的每个数据包的源一目的站点的MAC地址,可提供价格便宜、高带宽的网络连接,但控制数据包的能力被限制在广播域内;

路由器工作在OSI七层模型的第三层,即网络层,能够识别数据流的源和目的网络地址,控制数据包的能力限于源一目的地址对,内置路由协议,同时具有大容量的缓存能力,通常通过路由软件实现网间互连。

普通交换机和路由器都有自己的一些不足。如路由器需要功能很强的处理器,它的巨大的路由表会在网络中造成延迟,引起转发速度慢,且价格昂贵,往往成为制约网络高速传输的瓶颈;位于第2层的普通交换机因为仅读取源一目的MAC地址,没有获得数据包中更高层信息,因而交换功能有限,对主干数据流不具备必要的控制能力。

二、第三层交换和路由交换机

第三层交换借助于线速交换技术,使交换速度达到传输线上的数据传输速度,消除了交换瓶颈。实现线速交换的关键作用是用硬件(一个专用处理器)而不是传统的软件方式实现协议解析和包转发。

线速交换有设计简单、可靠性高、功耗低、功能多等优点。线速交换的实现还依赖于分布式处理技术,它能同时处理多个端口的数据流。所以第三层交换一般是中央处理器(CPU)、精简指令集计算机(RISC)、专用集成电路(ASIC)并用的并行处理体系。

采用第三层交换技术,同时集成部分路由功能的交换机就是第三层交换机或路由交换机。它保留了第三层上的网络拓扑结构和服务,这些结构和服务在网络分段、安全性、可管理性和抑制广播等方面具有很大优势,具有鉴别各种应用层协议的能力,有助于实现基于策略的网络控制。

路由交换机有较高的路由能力和较低的延迟,能同时支持网络协议(IP)和IPX,具备一些安全机制,如存取控制等。但是路由交换机缺乏路由器的灵活性,且仅支持有限的路由协议,同时也缺乏高级路由器的缓存能力。

三、第四层交换和交换式路由器

对网络的每次访问都会在客户机与服务器之间产生一串数据包,这些数据包构成的数据流可分别在第二、三或第四层进行识别,各层会依次提供关于该数据流的越来越详尽的信息。网络管理的一个最基本的工作就是控制这些网络数据流。

如果一台客户机同时使用同一服务器上的多个应用程序,那么,仅仅读取第三层信息就不会知道在同一服务器上有多个不同应用程序被使用,这样就无法辩认出不同应用的数据流,更无法为每个数据流逐一实施不同的有针对性的控制规则。

路由交换机(第三层交换机)集成了交换和路由处理功能,从而将第二层交换和路由功能结合起来,解决了传统路由器在性能方面的某些不足。但它不能完成全部的路由功能,也无法在应用层提供对数据流的控制。

显然,要想兼顾数据包的转发性能和数据流的控制功能,必须进一步在网络的第四层识别数据流。OSI模型的第四层是传输层,它负责协调网络源与目的系统之间的通信。

传输控制协议(TCP)和用户数据报协议(UDP)都位于第四层,它们的报头都包含有端口号,这些端口号可以确定每个包中包含的应用程序协议,如端口号 21对应文件传送协议(FTP)、端口号80对应超文本传输协议(HTTP)等等。所以识别第四层,能够得到每个数据包中这些应用程序的一些信息。

将第四层报头的端口号信息和第三层报头的源一目标信息结合使用,就能够在客户机与服务器间针对不同的应用程序实现较精确的控制,如果交换式路由器是全功能的,则所有这些工作都可以以线速完成,并能实施多种控制,这样的交换机被称为交换式路由器。

交换贡路由器的查询和控制功能都是通过硬件ASIC实现的。ASIC能够收集到的关于第一数据包流量的信息越多,可作用于该数据包流的控制水平就有越精确。一对客户/服务器可同时进行多个不同的应用程序会话,而一个企业主干网又可存在数千个客户/服务器对,因此一个主干网级的交换式路由器必须具有极大的表容量,以便存储多达数百个第四层信息。路由交换机一般都不具备足以保存有关第四层数据流信息的大容量缓存。