大数据人才:企业需要什么样的数据科学家

大数据是当今最热门的IT概念,存储、处理、分析大数据的解决方案都层出不穷,Hadoop更是让企业低成本处理大数据成为可能,但是大数据最大的问题不是工具,而是人才短缺。数据科学家DJ Patil曾经在LinkedIn、Skype、eBay和Paypal等公司就职,对企业需要什么样的数据科学家,以及数据科学家对今日企业之创新和竞争力的意义都有深刻见解。

互联网企业的秘密武器

0911-linkedin-data-science-chart

LinkedIn数据分析人才岗位的历史增长       数据来源:LinkedIn

Patil认为,最先成功挖掘数据价值的无疑是在线零售商,亚马逊是这个领域的带头羊,高人一等的商品推荐技术已经成为亚马逊的核心竞争力。此外社交网站的成功也非常依赖数据科学家。例如Facebook通过复杂的追踪和分析技术,能判断出一个用户最少需要多少个Facebook好友才有可能成为长期用户。于是Facebook在其产品设计中,尽量让用户在一个可以接受的时间跨度内找到足够多的联系人。

在线视频租赁公司Netflix的数据科学家们可以判断出,当一个客户在租看多少部电影后将有可能发展成长期客户。Paypal和美国运通则依赖数据分析来进行欺诈检测,减少信用欺诈。

网络游戏公司Zynga通过分析用户数据来识别一个游戏让用户沉迷的引爆点。通过分析用户在一个新游戏中头几天搭建的房屋数量、杀死的怪物数量,Zynga能判断出该用户成为长期用户的几率。Zynga反过来也会调整产品设计,让用户更容易完成那些会导致他们欲罢不能的“战绩”。

企业需要什么样的数据科学家

企业需要的数据人才大致分为几类,主要包括产品和市场分析、安全和风险分析以及商业智能三大领域。产品分析是指通过算法来测试新产品的有效性,是一个相对较新的领域。在安全和风险分析方面,数据科学家们知道需要收集哪些数据、如何进行快速分析,并最终通过分析信息来有效遏制网络入侵或抓住网络罪犯。

Patil认为,一位优秀的企业数据科学家需要具备的基本素质包括:技术经验、好奇心、会讲故事等。

但最根本的问题依然是人才短缺,一将难求:“我所工作过的每一家企业都为招聘合适的数据人才而头疼,通常面临两类选择,要么招募拥有多领域经验和知识结构的数据分析专家,要么从大学招聘天资不错的毕业生,让他们在实习中成长。”Patil警告那些将数据分析团队等闲视之的企业领导:“数据分析是一项高度创造性的工作,数据科学家团队的成员之间需要沟通融洽、相互信任,让一堆天才之间默契合作并不容易,不过这也是挑战和乐趣所在。”