解析大数据背后蕴藏的信息

预测分析是在目前这个大数据时代,将大数据的问题化为对企业领导者有利决策的好方法。在商业中, 这种基于数据中发现的表面模式的预测能力能帮助企业做出明智的决定并识别风险和机会。

它是释放出大数据力量的科学。预测分析它是可以应用于生活的各个方面和业务。能给企业领导者做出正确决策是指示。

问:什么是预测分析?

回答:预测分析一种技术是能够从数据来预测每个个体将会做的事,从发财并捐款到偷盗,撞你的车。经过预测分析,企业能成功推动市场营销,审计,执法,医学治疗,教育,甚至进行总统的政治竞选。

问:预测分析的目标是什么?

回答:预测是推动改进决策, 指导数百万人行动的关键。对于医疗保健, 这可以拯救生命。对于执法, 它可以对抗犯罪。对于业务, 它减少风险, 降低成本, 改善客户服务, 减少不必要的邮件和垃圾邮件。它还是促成连任美国总统的因素。

问:什么时候预测分析第一次成真的?有临界点吗?

回答:随着基础技术在研究实验室的牢固确立, 部署预测分析的主要挑战是一种必不可少的文化转变。超出了技术上建立预测模型数据的努力,个体做出预测然后结果必须为企业所使用, 在预测之上行动以驱动经营活动。以这种方式整合预测分析, 从而改变(提高)“一切照常”的心态,需要一个企业的改变,它不会打个响指就能轻松实现。

虽然我们刚刚到达一个临界点,关键是有了普遍的使用和共识,直到现在它才像是悄悄降临世界。有细分市场已是平常, 如针对大规模直邮的营销活动, 预测哪种手机消费者会转向另一个无线运营商的风险,确定信用卡申请人的风险。这些已经实实在在存在了至少二十年。更广泛的用于营销、欺诈检测、在其它业务中取消预定,在线目标投放广告,在此成功的基础上有更多的有机性成长。

问:对于预测分析来说,开发工具和方法处理非结构化数据,如文本和其它主观材料有多重要?

回答:在一些项目中, 非结构化数据对预测精度是至关重要的。例如, 对于一些机构, 处理客户服务代理的类型备注是检测更有可能取消预定的客户的关键。在其他情况下根本, 则没有相关的非结构化数据可以使用。

问:预测分析基本处理的是相关性,还是因果关系?

回答:是相关性。因果关系是难以捉摸很难建立的,而且你不一定需要它来预测。如果我们考虑相关性,早期退休人员有更高的健康风险, 我们想知道为什么, 但要利用这些信息我们实际上并不需要知道为什么。相反, 在决定是否优先考虑病人的额外检查或其他预防为主的活动时,提前退休成为一个要考虑的因素。

问:小型企业可以像大企业那样实施预测分析吗?

回答:可以的, 而且经常会。只要有足够长的客户列表可以学习,就有可能。例如, 许多小公司给大量的客户发直接邮件。

问:我有一家小型的,面向顾客的公司,有几个客户信息的数据库,竞争智能等等,我该从哪里开始?

回答:首先要确定预测的是什么客户行为,以及这样的预测能提供怎样的价值, 即用这样的个体预测要对什么操作进行调整。例如, 预测如果邮寄宣传册,哪些客户会购买以决定谁是值得发送成本2美元的小册子。

问:为什么我们有数据恐惧证?

回答:我认为我们现在很快变得不太恐慌于数据了。那些从来没有感到数学是安全或舒适的人最初可能回避定量导向概念并假设他们是神秘的, 难以理解的。但人们很快发现决定对每个人“是与不是” 发邮件、批准、调查、监禁, 或设置在一个日期的这个想法 —— 基于对个人行为的预测 —— 不是那么地难以捉摸。而如何基于已知的所有因素形成对个体的预测的基础思想也变成了任何人都可以轻而易举地理解的,即使没有数学思想。

问:预测分析有什么黑暗面吗?我们怎么控制它?

回答:对于任何营销、执法, 或其他活动, 都要将个人的需要和权利做为平衡的一部分。任何集体性的活动, 失去对个人的关注的风险总是存在的。关键是增加公众对预测分析的理解, 它是如何被使用的, 和对它工作的感知,以便知情参与讨论、辩论,立法的活动。

问:预测分析的算法变得更擅长于弄清楚我们会如何。它会抹杀创造力和意外发现吗?预测分析会不会产生一个iPod?

回答: 我坚持认为这个强大的工具可以帮助世界, 提升人类活动。预测分析有助于调整现有的操作,它是一个范式的转变, 但它不会创建新的范式转变,像iPod。更智能地运作事情,更有效的渲染运营 (例如, 减少垃圾邮件) 只是开启了另外的资源和机会, 它反过来继续促进人类的创造力。没有什么可以反向激励人类的创造性,我不认为企业家和科学家很快打算在任何时间放缓脚步。