流媒体是采用流式传输方式在网络上播放的媒体格式,视频网站内容、短视频、在线直播这些视频形态,均属于流媒体的不同分支。流媒体大致包含三个层级:码流、封装和协议。从音视频编码器输出的码流,经过某种封装格式后,经过特定的协议传输、保存,构成了流媒体世界的基础功能。
在直播应用的开发过程中,如果把主播端消息事件传递到观众端,一般会以Instant Messaging(即时通讯)的方式传递过去,但因为消息分发通道和直播通道是分开的,因此消息与直播音视频数据的同步性就会出现很多问题。那么有没有在音视频内部传递消息的方法呢?答案是SEI(Supplemental Enhancement Information)。金山云目前推出的直播问答解决方案中,就用到了SEI,作为一名视频云架构资深开发工程师,今天就来和大家分享一下SEI的技术细节。
SEI介绍
SEI即补充增强信息,属于码流范畴,它提供了向视频码流中加入额外信息的方法,是H.264/H.265这些视频压缩标准的特性之一。SEI的基本特征如下:
1.并非解码过程的必须选项
2.可能对解码过程(容错、纠错)有帮助
3.集成在视频码流中
也就是说,视频编码器在输出视频码流的时候,可以不提供SEI信息。虽然在视频的传输过程、解封装、解码这些环节,都可能因为某种原因丢弃SEI内容,但在视频内容的生成端和传输过程中,是可以插入SEI信息的。这些插入的信息,和其他视频内容一同经过传输链路到达消费端。举例来说,当前火爆的直播问答模式,就是通过SEI传递较多和答题业务相关的信息,通过SEI承载的信息,极大地优化了题目显示和观众音视频观看的同步性。
那么在SEI中可以添加哪些信息呢?以下是一些用户场景可任意扩展的例子:
1.传递编码器参数
2.传递视频版权信息
3.传递摄像头参数
4.传递内容生成过程中的剪辑事件(引发场景切换)
对于SEI如何应用,我们先以H.264/AVC这一视频编码标准为例。在这一标准中,整个系统框架分为两层:视频编码层面(Video Coding Layer,简称VCL)和网络抽象层面(Network Abstraction Layer,简称NAL)。VCL负责表示有效视频数据的内容,NAL负责格式化数据并提供头信息,以保证数据适合各种信道和存储介质上的传输。NAL unit是NAL的基本语法结构,它包含一个字节的头信息(NAL header)和一系列来自VCL的原始数据字节流(RBSP)。
H.264/AVC中的情况
NAL unit type储存在NAL header中,在H.264/AVC标准中,可用的NAL unit type一共有17种,作用是高速解码器,承载的数据是视频关键帧,还是视频解码器的配置参数信息。其中值为6时表征SEI内容。比较常见的类型如下表所示:
H.264/AVC中完整的NAL unit类型定义请参考《ISO/IEC 14496-10:2014》,这是MPEG专家组为AVC编解码器制定的标准,H.264/AVC中NAL unit类型完整定义都在该标准的7-1表中,标准一共预留了32种类型,在NAL header里面,用5 bits表征NAL unit type。
H.264/AVC中的NAL unit type
如上图所示,在8 bits的NAL header中:
1.第0位是禁止位0,值为1时表示语法出错
2.第1~2位是参考级别(NRI,NAL ref idc)
3.第3~7位是NAL unit type
需要注意的是,当NRI取值为”00″(二进制)时,表征NAL unit不参与重建参考图像,这时的NAL unit是可以丢弃的。大于”00″(二进制)时,NAL unit不能被丢弃。
H.265/HEVC中的情况
《ISO/IEC 23008-2:2015》是MPEG专家组为HEVC编解码器制定的标准,H.265/HEVC中NAL unit类型完整定义都在该标准的7-1表中,可用的NAL unit type一共有40种之多,其中39和40都表征SEI内容。因为标准一共预留64种类型,所以在NAL header里面,用6 bits表征NAL unit type。
H.265/HEVC中的NAL unit type
如上图所示,在16 bits的NAL header中:
1.第0位是禁止位0,值为1时表示语法出错
2.第1~6位是NAL unit type
3.第7~12位是NUH layer id
4.第13~15位是temporal_id
SEI类型
在H.264/AVC视频编码标准中,并没有规定SEI payload type的范围,所以表征payload type的字节数是浮动的。
语法分析如下所示,当开始解析类型为SEI的NAL时,持续读取8bit,直到非0xff为止,然后把读取的数值累加,累加值即为SEI payload type。
sei_message(){
payloadType = 0
while( next_bits(8) == 0xFF){
ff_byte
payloadType += 255
}
last_payload_type_byte
payloadType += last_payload_type_byte
}
读取SEI payload size和payload type逻辑类似,仍然是读取到0xff为止,这样可以支持任意长度的SEI payload添加。
sei_message(){
payloadSize = 0
while( next_bits(8) == 0xFF){
ff_byte
payloadSize += 255
}
last_payload_size_byte
payloadSize += last_payload_size_byte
}
当获取了SEI payload类型和大小后,就进入了实际的SEI内容读取。
当前《ISO/IEC 14496-10:2014》Annex D.1.1提供了最大到181的payload类型处理规范,由于类型可以指定任意大小,给SEI的添加、处理创造了很大的自由空间。
其中SEI payload类型值为5时,指定的处理方法叫user_data_unregistered(),字面含义为未注册的用户数据,常用于存储编码器的编码参数信息,是比较常见的payload类型。
读取payload type为5时,具体的语法解析流程如下:
user_data_unregistered(payloadSize){
uuid_iso_iec_11578
for( i=16; i< payloadSize; i++)
user_data_payload_byte
}
其中uuid_iso_iec_11578的详细定义在《ISO/IEC 11578:1996》 Annex A中,大致规定了使用128 bits(16个字节)来指定UUID。此处UUID可以表征写入SEI payload的角色ID,或者表征其他业务用途。剩下的payloadSize -16字节,即是业务层传递的具体内容了。
通过user_data_unregistered()语法解析可以看出,当使用SEI payload type为5时,注意事项如下:
1.payload size应该大于16;
2.uuid可能出现0x000000/0x000001/0x000002,需要插入0x03做防竞争处理;
构成RBSP时,都需要做RBSP拖尾处理。拖尾处理对所有SODB方式都一致。rbsp_trailing_bits()语法逻辑如下:
rbsp_trailing_bits( ){
rbsp_stop_one_bit
while( !byte_aligned( ) )
rbsp_alignment_zero_bit
}
SEI例子
从video.js <https://github.com/videojs/video.js>的示例中下载oceans.mp4 <http://vjs.zencdn.net/v/oceans.mp4>并提取出H.264码流如下:
bitstream from oceans.mp4
NAL header
起始码(暗红底色)”0x00000001″分割出来的比特流即是NAL unit,起始码紧跟的第一个字节(墨绿底色)是NAL header。上图“NAL header”一共出现了四个数值:
·”0x06″,此时NRI为”00B”,NAL unit type为SEI类型。
·“0x67”,此时NRI为“11B”,NAL unit type为SPS类型。
·“0x68”,此时NRI为“11B”,NAL unit type为PPS类型。
·“0x65”,此时NRI为“11B”,NAL unit type为IDR图像。
SEI payload type
”0x06″后一个字节为“0x05”(淡黄底色)是SEI payload type,即表征SEI payload分析遵循user_data_unregistered()语法。
SEI payload size
“0x05”后一个字节为“0x2F”(淡蓝底色)是SEI payload size,此时整个payload是47个字节。
SEI payload uuid
”0x2F”随后的16个字节即为uuid,此时uuid为
dc45e9bd-e6d9-48b7-962c-d820d923eeef
SEI payload content
由于payload size是47个字节,除去16字节的uuid,剩下31个字节的content。由于content是字符串,所以有结束符”0x00″,有效的30个字符内容是:
Zencoder Video Encoding System
rbsp trailing bits
47个payload字节后的”0x80″(灰底色)即是rbsp trailing bits,在user_data_unregistered()里面都是按字节写入的,所以此时的NAL unit结尾写入的字节一定是0x80。
SEI的生成
生成SEI的方式很多,大致可以有:
1.对已有码流做filter,插入SEI NAL
2.视频编码时生成SEI
3.容器层写入时插入SEI
以下代码示例来自于FFmpeg origin/master 分支。
bsf
BitStream Filter(码流过滤)的缩写为bsf,它的作用是,在不做码流解码的前提下,对已经编码后的比特流做特定的修改、调整。
bsf h264_metadata的调用
使用ffmpeg工具时,可以使用比特流过滤器。基本的filter调用格式如下:
ffmpeg -i INPUT -c:v copy -bsf:v filter1[=opt1=str1:opt2=str2][,filter2] OUTPUT
从上文提到的mp4文件中提取出h.264码流oceans.h264,可以使用 h264_metadata比特流过滤器添加SEI。下面示例命令添加了类型为未注册的用户数据的SEI,其中uuid为”086f3693-b7b3-4f2c-9653-21492feee5b8″,payload内容为”hello”:
./ffmpeg -I oceans.h264 -c:v copy -bsf:v h264_metadata=sei_user_data=’086f3693-b7b3-4f2c-9653-21492feee5b8+hello’ oceans.sei.h264
其中oceans.h264已经有一个SEI和28个SPS。输出的oceans.sei.h264码流中,共有28个SEI,其中第一个与输入保持一致,剩下27个为新插入的SEI。
bsf h264_metadata的代码分析
具体代码位于:libavcodec/h264_metadata_bsf.c中。
// 函数int h264_metadata_filter(AVBSFContext *bsf, AVPacket *out)
if (ctx->sei_user_data && (has_sps || !ctx->sei_first_au)) {
H264RawSEI *sei;
H264RawSEIPayload *payload;
H264RawSEIUserDataUnregistered *udu;
int sei_pos, sei_new;
ctx->sei_first_au = 1;
for (i = 0; i < au->nb_units; i++) {
if (au->units[i].type == H264_NAL_SEI ||
au->units[i].type == H264_NAL_SLICE ||
au->units[i].type == H264_NAL_IDR_SLICE)
break;
}
sei_pos = i;
if (sei_pos < au->nb_units &&
au->units[sei_pos].type == H264_NAL_SEI) {
sei_new = 0;
sei = au->units[sei_pos].content;
} else {
sei_new = 1;
sei = &ctx->sei_nal;
memset(sei, 0, sizeof(*sei));
}
}
以上代码是h264_metadata添加SEI的判断逻辑,当指定了sei_user_data时,满足以下条件之一即可以处理:
·读取的access units是第一个au;
·当前au包含sps;
满足插入SEI逻辑后,具体处理过程中:
·如果发现第一个NAL已经是SEI,则该au不做插入SEI处理;
·如果au包含了IDR帧或者非IDR未分区的帧,则在其前面插入SEI信息。
基于以上代码,oceans.sei.h264码流中新插入27个新的SEI 符合处理逻辑。
具体构造SEI NAL Unit代码如下:
sei->nal_unit_header.nal_unit_type = H264_NAL_SEI;
err = ff_cbs_insert_unit_content(ctx->cbc, au,
sei_pos, H264_NAL_SEI, sei);
if (err < 0) {
av_log(bsf, AV_LOG_ERROR, “Failed to insert SEI.\n”);
goto fail;
}
payload = &sei->payload[sei->payload_count];
payload->payload_type = H264_SEI_TYPE_USER_DATA_UNREGISTERED;
udu = &payload->payload.user_data_unregistered;
for (i = j = 0; j < 32 && ctx->sei_user_data[i]; i++) {
int c, v;
c = ctx->sei_user_data[i];
if (c == ‘-‘) {
continue;
} else if (av_isxdigit(c)) {
c = av_tolower(c);
v = (c <= ‘9’ ? c – ‘0’ : c – ‘a’ + 10);
} else {
goto invalid_user_data;
}
if (i & 1)
udu->uuid_iso_iec_11578[j / 2] |= v;
else
udu->uuid_iso_iec_11578[j / 2] = v << 4;
++j;
}
if (j == 32 && ctx->sei_user_data[i] == ‘+’) {
sei_udu_string = av_strdup(ctx->sei_user_data + i + 1);
if (!sei_udu_string) {
err = AVERROR(ENOMEM);
goto sei_fail;
}
udu->data = sei_udu_string;
udu->data_length = strlen(sei_udu_string);
payload->payload_size = 16 + udu->data_length;
}
代码完整解释了上文提到的SEI规范,其中”H264_SEI_TYPE_USER_DATA_UNREGISTERED”值为5,对应的即是未注册的用户信息。在解析”ffmpeg”工具输入过程中,将”+”号前面的字符串转换成二进制写入uuid,”+”后内容使用字符串写入payload。
x264
libx264支持多种SEI类型数据写入,常用的仍然是SEI_USER_DATA_UNREGISTERED,具体的写入函数x264_sei_version_write()位于libx264/encoder/set.c中。
int x264_sei_version_write( x264_t *h, bs_t *s )
{
static const uint8_t uuid[16] =
{
0xdc, 0x45, 0xe9, 0xbd, 0xe6, 0xd9, 0x48, 0xb7,
0x96, 0x2c, 0xd8, 0x20, 0xd9, 0x23, 0xee, 0xef
};
char *opts = x264_param2string( &h->param, 0 );
char *payload;
int length;
if( !opts )
return -1;
CHECKED_MALLOC( payload, 200 + strlen( opts ) );
memcpy( payload, uuid, 16 );
sprintf( payload+16, “x264 – core %d%s – H.264/MPEG-4 AVC codec – “
”Copy%s 2003-2018 – http://www.videolan.org/x264.html – options: %s”,
X264_BUILD, X264_VERSION, HAVE_GPL?”left”:”right”, opts );
length = strlen(payload)+1;
x264_sei_write( s, (uint8_t *)payload, length, SEI_USER_DATA_UNREGISTERED );
x264_free( opts );
x264_free( payload );
return 0;
fail:
x264_free( opts );
return -1;
}
libx264提供的uuid和上文举例的uuid一致,payload中主要记录了相关参数和版权信息。以上函数完成了SEI参数的构造,下面的函数x264_sei_write完成了具体语法的写入:
void x264_sei_write( bs_t *s, uint8_t *payload, int payload_size, int payload_type )
{
int i;
bs_realign( s );
for( i = 0; i <= payload_type-255; i += 255 )
bs_write( s, 8, 255 );
bs_write( s, 8, payload_type-i );
for( i = 0; i <= payload_size-255; i += 255 )
bs_write( s, 8, 255 );
bs_write( s, 8, payload_size-i );
for( i = 0; i < payload_size; i++ )
bs_write( s, 8, payload[i] );
bs_rbsp_trailing( s );
bs_flush( s );
}
以上写入的代码逻辑和标准语法说明保持一致。
SEI解析
FFmpeg在读取和解码NAL unit,都有相同的逻辑处理SEI。
读取或者解码数据时,会调用下面函数进行码流的解码,其中buf包含具体的二进制流,buf_size是当前码流长度。函数内部会解析码流并实例出具体的NAL对象:
//Locate in libavcodec/h264dec.c
int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size)
如果NAL对象类型是SEI 时,将调用以下函数解码:
//Locate in libavcodec/h264_sei.c
int ff_h264_sei_decode(H264SEIContext *h, GetBitContext *gb,
const H264ParamSets *ps, void *logctx)
函数内部会判断SEI payload type进行不同的函数调用,如果是未注册的用户数据,则调用以下函数:
int decode_unregistered_user_data(H264SEIUnregistered *h, GetBitContext *gb,void *logctx, int size)
{
uint8_t *user_data;
int e, build, i;
if (size < 16 || size >= INT_MAX – 16)
return AVERROR_INVALIDDATA;
user_data = av_malloc(16 + size + 1);
if (!user_data)
return AVERROR(ENOMEM);
for (i = 0; i < size + 16; i++)
user_data[i] = get_bits(gb, 8);
user_data[i] = 0;
e = sscanf(user_data + 16, “x264 – core %d”, &build);
if (e == 1 && build > 0)
h->x264_build = build;
if (e == 1 && build == 1 && !strncmp(user_data+16, “x264 – core 0000”, 16))
h->x264_build = 67;
av_free(user_data);
return 0;
}
可以看到,根据SEI语法标准,在解析了SEI payload type和length后,对未注册用户数据的提取,跳过了uuid的分析,只尝试提取了x264的build信息。总体上,并未利用SEI_USER_DATA_UNREGISTERED传递过来的其他相关参数信息。
从解码器逻辑看,H264SEIUnregistered结构体只有一个x264_build属性,并未返回实质有效数据。上层业务如果需要提取SEI_USER_DATA_UNREGISTERED,仍然需要自己提取。提取逻辑,请参考下一小节(ffplay)。
ffplay
ffplay是一个简单、常用的FFmpeg接口示例工具,常用于测试解码、播放效果。如果在ffplay中示例跑通SEI提取功能,可以很方便的移植到其他平台。
在ffplay中通过函数av_read_frame(ic, pkt)返回后,读取pkt->data可以快速拿到当前读到的NAL unit。从data数据中取出NAL unit type,如果是SEI且是用户未注册数据类型(payload type值为5),则可以参考SEI语法继续读取UUID和其后传递的字符串。
总结
本文主要对H.264码流中涉及用户未注册数据的SEI进行了分析。总体而言,SEI只是视频标准里面很小的一部分,但在应用过程中,比如直播问答项目中SEI承载的信息,就极大提升了直播观看和答题操作的整体用户体验。所以说,从SEI的例子中,我们就会发现,视频标准里面还有很多金矿等待着大家的挖掘,这就是多媒体技术的魅力,也是金山云努力的方向。
本文作者:阿曾