企业IT大数据现状及问题分析

咸师 发表于:13年03月20日 09:36 [原创] DOIT.com.cn

  • 分享:
[导读]我们知道大数据的4v理论,数量(Volume)、多样性(Variety)、速度(Velocity)和真实性(Veracity),为我们制定大数据的策略提供了很好的方向。但同时我们在处理大数据的时候还是面临着很多问题,就目前大数据处理的现状来看,基本上处于以下几种状态。

去年我们可能还在讨论大数据这个概念,今年我想很多企业和厂商已经开始行动了。大数据能掘到多少金子,我觉得这都是后话,目前紧要关头是迎接大数据的到来,如果你接不住大数据那么你在未来的企业市场将会被淘汰。这不是危言耸听,我们看到现在生成数据的设备在增加,个人数字设备、企业计算系统产生的数据量远远超过10年前,是1996年的180倍。文件(非结构化数据)本身的大小在发生变化,从600MB的RMVB到了30GB的蓝光1080P视频,企业数据量增加,造成的数据库庞大。这三点无疑都是迫使企业进入大数据时代的原因。

我们知道大数据的4v理论,数量(Volume)、多样性(Variety)、速度(Velocity)和真实性(Veracity),为我们制定大数据的策略提供了很好的方向。但同时我们在处理大数据的时候还是面临着很多问题,就目前大数据处理的现状来看,基本上处于以下几种状态。

大数据处理现状

1、大数据处理平台以Hadoop为主

目前大数据的处理平台以Hadoop为主,都是自建Hadoop集群或使用Amazon Elastic MapReduce服务,而Google的BigQuery由于种种限制推广得并不理想。微软的Cosmos/Dryad/Scope由于体系仅限于内部使用,也不能成为大数据的平台,同时微软对外也支持hosting Hadoop。

2、大数据处理技术复杂

大数据的处理技术纷繁复杂,仍然处于产业变革早期的战国时代。由于传统的OLAP和数仓的延续性,Hive SQL有很大市场,但Hive的数据正确性和Bug仍然比较多。而Hadoop MapReduce又过于复杂灵活,写出高效Job比较困难。Pig、FlumeJava等分布式编程模型技术的门槛较高,所以推广起来也比较困难。在数据挖掘和图算法领域虽然涌现出了Mahout、Hama、GoldenOrb等大量开源平台,但都不够成熟。至于基于Hadoop的工作流系统Oozie和数据传输系统Sqoop都需要开发人员单独部署。都是各有利弊,还没有一个很好的完美的解决方案。

3、Hadoop尚难成为公共云服务

为什么说Hadoop很难成为公共云服务呢,原因有以下几个方面,第一Hadoop的安全体系局限在企业内网,缺乏多租户的支持。第二直接暴露HDFS文件系统,MapReduce和Hive很难做到多用户数据安全。第三数据文件格式过于复杂多样,维护成本高,保持数据兼容比较困难。

综上三点目前大数据的现状,我们可以看出,大数据处理系统的技术门槛很高,从自备发电机到公共电网还有很长的路要走。而市场则需要安全性、可用性、数据正确性都有保障,并且功能完整的一体化大数据处理服务。

[责任编辑:赵航]
咸师
中国企业信息化从90年代初期开始起步,经过20年的发展,许多企业尤其是大中型企业的IT架构已经搭建完毕。但是,中国企业信息化建设有一个非常显著的特点是,IT系统建设是根据企业各个阶段的需求完成,并没有一个整体的规划。这就导致企业各个IT系统是孤立的,各个系统无法有效地连接起来。
官方微信
weixin
精彩专题更多
存储风云榜”是由DOIT传媒主办的年度大型活动。回顾2014年,存储作为IT系统架构中最基础的元素,已经成为了推动信息产业发展的核心动力,存储产业的发展迈向成熟,数据经济的概念顺势而为的提出。
华为OceanStor V3系列存储系统是面向企业级应用的新一代统一存储产品。在功能、性能、效率、可靠性和易用性上都达到业界领先水平,很好的满足了大型数据库OLTP/OLAP、文件共享、云计算等各种应用下的数据存储需求。
联想携ThinkServer+System+七大行业解决方案惊艳第十六届高交会
 

公司简介 | 媒体优势 | 广告服务 | 客户寄语 | DOIT历程 | 诚聘英才 | 联系我们 | 会员注册 | 订阅中心

Copyright © 2013 DOIT Media, All rights Reserved. 北京楚科信息技术有限公司 版权所有.